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The authors give new error estimates of Lagrange interpolation in the weighted
L p . u norm, when u is a generalized Jacobi weight and the interpolation points are
the zeros of polynomials orthogonal with respect to (another) generalized Jacobi
weight. 1995 Academic Press. Inc.

1. INTRODUCTION

Let X = {Xm.b k = 1, ... , m, m = 1,2, ..,} c (-1,1) be a matrix of knots
and let I be bounded function on [-1,1]. We denote by Lm{X,f) the
Lagrange polynomial interpolating the function I at x m. k' k = 1, ... , m. The
operator Lm(X) maps bounded functions into continuous functions with an
L p weighted norm, 1 .:::; p < 00. Therefore, if u is a suitable weight function,
then

IILm(XJ) u lip':::; const IIIII x

holds. Indeed, when the entries of X are the zeros of certain orthogonal
polynomials, then there are presented in the literature necessary and
sufficient conditions on u for the above to hold (see e.g. [10, 14]. There
also are some necessary conditions on 1I when X is a general matrix of
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points dense in [-I, I] (see [8]). In particular, if f is a continuous
function, using the previous bound we get

II [f - L rn(X,f)] u lip ~ const Ern - I (f),

where Em(f) denotes the error of the best uniform approximation by
algebraic polynomials. Nevertheless, the last estimate often is not suitable
(if, say, f is not continuous). Further, as it turns out, in many applications
it is necessary to estimate the interpolation error in an L p weighted norm
by the same norm of the (local) derivative of the function f In the present
paper, we obtain estimates of this kind, when p E (I, 00), u is a generalized
Jacobi weight, and the points of interpolation are the zeros of the
generalized Jacobi polynomials. First, in the last inequality, we replace
Em-1(f) by the error Em-1(f)u.P of the best one-sided approximation in
the L p space with weight u. Subsequently, we give estimates of Em-1(f)u.P
when the function f is locally absolutely continuous. This procedure can be
applied to several discrete type operators.

2. MAIN RESULTS

We say thatfELp([a, b]), -I ~a < b ~ I, I ~p < 00, if and only if

Ilfll~p([a,hJ)=rIf(x)l"dx<oo.

Ifa=-I and b=l, then we writefELp and 'lfll~=J~llf(x)l"dx. If
p = 00, we consider the vraisup norm. Further, we denote by AC Loc the
class of the functions absolutely continuous in any closed set [a, b] c

( - I, I). In the following Ilm denotes the set of the polynomials of degree
at most m. Throughout this paper, the symbol "'C" stands for a positive
constant which may take different values on different occurrences. Let g be
a bounded and measurable function, and let a be a weight function with
a E Lp' We set

Em(g)a,p = inf {II( Q+ - Q-) a lip, Q± E Ilm,

Q-(x)~g(x)~Q+(x), xE[-I,I]}. (2.1)

Ern(g)a,p is called the error of the best one-sided approximation of the
function g in L p space with weight a.

Let

s

w(x) = l/!(x) v",p(x) n IXk -Xl)'k,

k=l

Ixl ~ I, (2.2)
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where v",P(x)=(I-x)"(l+x)P, rx.,P>-1 is a Jacobi weight, Yk>-l,
IXkl < 1, k= 1, .", s, O<.pELip A, O<A::::;; 1. The weight w is called
generalized smooth Jacobi weight (WEGSJ) (see e.g. [1, 10]). Now, let
{pm( w)) } mEN be the system of orthonormal polynomials corresponding to
the weight function w, that is, Pm(w) is a polynomial of degree exactly m
with positive leading coefficient and r-l Pm( w; t) Pn( w; t) w( t) dt = <>m.1I" We
denote by x k = X m, k( w), k = 1, ..., m, the zeros of Pm( w) indexed in
increasing order and by L m ( w,f) the Lagrange polynomial interpolating a
given function f: (-1, 1) -> IR at X b k = 1, ..., m. (Incidentally, the function
f can be unbounded at ± 1.) Thus, setting

if x E ( - 00, Xl ],

if x E [x 1 , X m ], m ~ 1,

if XE[Xm,oo),

In most cases u is a generalized Jacobi weight (u E GJ), i.e.,

u(X)=v)"'\X) n Irk-xla\
k~l

Ixl ::::;; 1. (2.4 )

In the following we use notations qJ(x) =~ and um(x) =
v)'· "(x) TI~~1 (Irk-xl +m-1)ak.

THEOREM 2.1. Let P E (1,00), q = p/(p-l) and m = 2,3, ".. If the weight
functions u EGJ, WE GSJ satisfy the conditions

and
;; w_v_W qJ-l/2 E L -E L
u q' u q'

(2.5 )

then for every bounded and measurable function g: [ - 1, 1] -> IR

where '{j is a positive constant independent of m and g.

(2.6)

The next crucial step is to estimate Em(fm)u,p (fm is the function defined
above).
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THEOREM 2.2. Let p E [1, 00], m = 2,3, ... , and u E GJ, wE GSJ. If U E Lp

and the function fE Ac Loc satisfies

(2.7)

where Xl = x m . I(W) and X m= X m.m(w), then

(2.8)

where C(j is a positive constant independent of m, p, and f

Theorem 2.2 yields

COROLLARY 2.3. Using the assumptions and the notations of the
Theorem 2.2, we get

- C(j -
EmUm)".p~-Em-lU'",)u'P,p, m;?-2, (2.9)

m

(2.10)r ;?- 1, m;?- 2.

where C(j is a positive constant independent of m, p, and f

The iterated application of (2.9) and (2.8) gives that if fr)rpr um E
Lp([x], X m ]), then

- C(j
Em(fm)",p ~ mr Ilf(rlqJrum II Lpl[XI. Xm ]),

When u(x) == 1 and 1 ~ p ~ 00, estimates similar to (2.10) are in [15] and
[5]. Further, when p= I and u=a(l +Iog+ a), aEGJ, estimates of
EmU)", I can be found in [7]. Now we estimate the error of Lagrange
interpolation. Setting 1m = [-I, XI] U [xm , I], the following theorem
holds.

THEOREM 2.4. Let p E (I, 00) and m = 2, 3, .... Assume that u E GJ and
WEGSJ satisfy (2.5). If uELp , then for every function fEAC Loc 'with
!'cp 2IP

UEL\

II [f- Lm(w,f)] u lip ~ ~ rEm _ \(fm )",p + f If'( t)l(1 - t2
) lip U( t) dtJ '

L 1m

(2.11 )

where C(j is a positive constant independent of m and f

Remark I. Using a similar argument, we can prove inequality (2.11) if
we replace u by Um'
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The estimate (2.11) is useful when the function f is unbounded at ± 1.
For instance, let w(x) = (1 - x 2 )" and u(x) = (1- x 2V In this case (2.5)
means

I
1'> -

P
and (

I 3 2) 1 2max I' - 1+-, 21' - - +- < (X < 21' - - +-.
p 2 p 2 p

Then, by (2.10) and (2.11) we obtain

{

(I)(rn-2,,-2)'-2/P)

II[f-L (w f)] ull = if f(x)=(l-x)", 17+1'+ l/p>O,
m' P (0(m-2)'-2/p)

if f(x) = log(1 + x).

The previous estimates have the same order as the best approximation in
Lp space with Jacobi weight (see [4, pp. 109, 110]).

Now we can state the following.

COROLLARY 2.5. Let p E (1, 00), m = 2, 3, ..., assume that u E GJ,
WEGSJ satisfy (2.5). lfUE Lp,fE AC Loc andf'qJUmELp , then

(2.12 )

where rt is a positive constant independent of m and f

Inequality (2.11), together with (2.10) and (2.12), is sufficient to estimate
the weighted L p interpolation error for a wide class of functions. In fact,
from (2.12) it follows, whenever f'rpumEL p , that

(2.13 )

where E m ( g)".P = infpE fl
m

II (g - P) 17 lip and 17 is a weight function. (Indeed,
we apply (2.12) for the function F(x)=f(x)-J-'_,Pm _ 2(t)dt, where
Pm-2 E JIm _ 2 ·)

If u=v)'·J (i.e., ak=O, k= 1, ... , r), we can estimate E",-2(j')'I'un,.p by the
main part of the rp-modulus of continuity [3]. Unfortunately, (2.13)
does not work in the general case U -# v)'· " because, at present, estimates
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of Em- 2(I')tpu
m

.P are not available. Instead we can proceed as follows.
Replacing in (2.12) Jby J(x) - f~1 L m_ I (w<p2,J', t) dt, we have

II[J - L m(w,J)] Ulip ~! II [I' - L m-I( W<p2,J')] <PUmlip, (2.14)
m

II [J- L m ( w,J)] Um lip ~! 11[1' - L m -I (W<p2,J')] <PU m lip, (2.15)
m

with 1 < p < 00.

Moreover, if UE GJ and WE GSJ satisfy (2.5), then so do U<pk and w<p2k.
Therefore, starting from (2.14) we can iterate (2.15) and finally apply the second
inequality in (2.12) or (2.11) together with (2.10). Hence, for instance, we get

r?31, l<p<oo. (2.16)

In particular, if p = 2, WE GSJ and U = j;, the conditions (2.5) are
satisfied. So the previous estimates are refinements of the well-known
theorem of Erdos and Turan [4] for GSJ weights.

Finally, we get

COROLLARY 2.6. Let p E [1, 00], m = 2,3, ..., and assume that UE GJ and
uELp. !fJEAC Loc andJ'<pumELp, then

where q; is a positive constant independent oj m, p, and f

Remark 2. It is easy to prove that Em(f)um,p ~ (q;jm)IIJ'<pum lip (see the
proofs in Section 3). Unfortunately, at this moment we cannot prove the
estimate Em(f)u,p~(q;jm)IIJ'<pullpwith uEGJ, which holds when u=v)"J

or when the exponents ak of the weight U are negative. The case when every
ak > 0 is open. Similar remarks hold for the other estimates.

3. PROOFS

ProoJof Theorem 2.1. From Theorem 9.25 by Nevai [II, p. 169], we get

StatementA. Let wEGSJ, uEGJ, uELp, l<p<oo, and PEIlm_ l •

Then

m

L A.m,k( w) Ium(xm.k( w)) P(xm.k( w)Wjwm(xm,k( w)) ~ C(J II Pull ~,
k~1
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s

Wm(x) = V",P(X) TI (Ixk-xi +m-1V\
k=l
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r

Um(X)=V)"ii(X) TI (I'k-xl+m-I)a\
k=l

Ixl < 1,

Am,k(W) = [~tol P7(W, Xm,k(W))] -I,
and rc = rc(w, u,p),

We also need a consequence of Theorem 3,2 by Xu [17, p, 82].

Statement B. By the notations and conditions of Theorem 2,1 and
Statement A, we have, for P Ellm _ 1 ,

m

IIPull~ ~ rc I Am.k(W) lum(xm,k(W)) P(Xm,k(W)W/Wm(Xm,k(W)),
k=l

In Statement B we applied the cast (replacing U in Xu's theorem by V)
V=uP/w, P'=u, and rx'=w.

Let g be a bounded and measurable function and Q ± Ellm _ 1 such that
Q-(x) ~ g(x) ~ Q+(x), Ixl ~ 1.

With U E GJ, we have

Using Statement B and then Statement A,

Then

(3.1 )

and Theorem 2,1 follows from (3.1), making the infimum with respect
to Q±, I
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In order to prove Theorem 2.2, we need some preliminary facts and
lemmas. If A and B are two expressions depending on some variables
then we write A ~ B if IAIBI ±I ~ '(5 uniformly for the variables under
consideration.

LEMMA 3.1. Let u(x)=b(x)v)'·J(x)n~~tITk-xlukEGJand Yk=Ym,k
=-cos(knl(m+I)), k=O, ...,m+l. IfuELp , then for every k with I~

Ikl ~ m and 1~ v, v ± k, v ± k ± 1 ~ m,

r u(x)dx~'{5lklr r+ k
u(x)dx

)'1'-1 YI'+k-1

where r=max{(12y+ 11,120+ II} +2rmaxk~1,.r lakl and '(5 is an
absolute constant independent of m, k, and v.

Proof The proof requires examination of several particular cases, but
only simple calculations. For the sake of brevity we consider the weight
u(x) = v)'· 6(x)lx - TI/ u1 and the case

-1 ~ Yv-l ~ Yv< , .. < Yv+k -I <Yv+k < ... < Yv+k +.<~TI ~ Yv+k+.<+ 1~O,

Then

_ fY' ~ (~)26 (( V+k +S)2 - v
2
)UI

Iv - u(x) dx ~ 2 2'
1','_1 m m m

-JY"+k v + k (V + k)26 ((V + k + S)2 - (V +k)2)Ul
IV+k - u(x) dx~ 2 2

Ynk-I m m m

and

Iv (V )26+1( (V+k+S)2_ v2 )Ul
IV+k - v+k (V+k+S)2_(v+k)2

= (_v )26+ 1(k + S)UI (2V +s +k )Ul.
v+k S 2v+s+2k

Assume k > O. (If k < 0, we can consider Iv+dIv.) Then, we obtain

Moreover, if at> 0, we have

(
2v+s+k )Ul < I

2v +s+2k
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If G]<O, then «k+s)/stl<l and «2v+s+k)/(2v+s+2kW1 =(1+k/
(2v+k+s))-al <CCk- al . Hence

as was stated. The other cases are similar. I

Let Xk=Xm.k(W), k=l, ... ,m, with m~2. Putting n=J1m, 2rr.<J1EN,
we denote by tk=t,,+u=-cos«(2k-I)/(n+I))(rr./2)), k=l, ...,n+l,
the zeros of the Chebyshev polynomial Tn + I' Since WE GSJ, I +
x m . dw) - m -2 - 1 - X m.,,,( w); hence there exists a fixed ji EN such that, for
J1 > max( In, ji) we have

for some p > I and a ~ n.
Now we define the function S+(x) = S+Um, x) as

a

S+(fm,x)=Mp+ I (x-tk)O+bb
k~p

where generally

. 0 {a,IJkx)=(x-t)+ =
I,

Furthermore,

Mp=sup{fm(t), -1 ~t~tp},

M k = sup {fm(t), tk -I < t ~ td,

M a + 1 = sup {fm(t), ta < t ~ l},

X~ t,

x> t.

p + 1~k~a,

k=p, ... ,a.

Analogously, we can define S - ex) = S - U"" x) as

a

S-Um' x) =m p + I (x - tk)~ Jb
k~p
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mp = inf{Jm(t), -I ~ t ~ tp },

mk = inf{Jm(t), tk _ I < t ~ tk},

m.,+l =inf{Jm(t), t.,<t~ l},

p+l~k~D",

k=p, ...,D".

By definition,

Now we put M = 2an, with a EN, 2a> r + 2, and r as defined in Lemma
3.1, and we define the polynomials P"!:t,k' P;;'.kEflM, p~k~D", as follows:

i = k, k + I, ..., n + I,
i = 1,2, ..., k - I,

i =1= k, j = I, 2, ..., 2a - I,

i = k + I, ... , n + 1,
i = 1,2, ..., k,

i =1= k, j = 1, 2, ..., 2a - 1.

Working as in [15], we can prove that

and

P"!:t. k(X) - PM, k(X) = I;'(x),

where Ik is the kth fundamental Lagrange polynomial based on the
Chebyshev zeros t I' ... , tn + l' Moreover, by the previous polynomials, we
define

P"!:t(X)= L P"!:t.k(X)Ok+ L PM,k(X)Ok+Mp,
~F>O ~k<O

PM(X)= L PM.k(X)Ok+ L P"!:t,k(X)Ok+Mp,
~k > 0 ~k < 0
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for k = p, ... , a, and from the definitions of S±Um' x) it follows that
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q:r(x)-qM(x)= I: W(x)IJkl,
k=p

a

P:r(x) - P,w(x) = I: l~a(x)IJk I.
k~p

(3.3)

(3.4 )

We still need a definition. Letting Yk=Yn.k= -cos(kn/(n+I)), k=
I, 2, ... , n, be the zeros of the nth Chebyshev polynomial of the second kind,
U,,, it is well-known that tk < Yk < tk + I' k = I, ... , n. Let us define S± (fm)
by

Yk _ I.:%: x.:%: Yb k = p, ... , a,

x< Yp_1 or Y".<x,

Yk-I.:%: x.:%: }\, k = p, ... , a,

X<Yp_1 or Ya<x.

Now we prove the following.

LEMMA 3.2. Let u E GJ be defined by (2.4) and U E L p with I.:%: p.:%: oc. If
fm is bounded and measurable, then

II(P,~ - PM) u II p.:%: rc 115'+ (fm) u II L p([ Ip~ 1.I.J)' (3.5)

II(q:r- q,-;f) u lip.:%: rc liS-Urn) u IILpl[lp~l.'.Ji' (3.6)

where rc is a positive constant independent of p, f and m> 5.

Proof For the sake of brevity, we prove (3.5). Formula (3.6) can be
proved similarly. We observe that if x E [Y;_I, y;], i = p, ... , a, then

Hence, from (3.4) and the Holder inequality
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On the other hand, recaIling Lemma 3.1 and the definition of S+ (fm), we
have

r l<>kII'UI'(x)dX~If,'(ik-il+l)l'rfk I<>kll'ul'(x)dx
Yi-I Yk-I

= If,'( Ik - il + I )I'r fk S+(fm, xV ul'(x) dx.
J'k- I

Then it follows that

f
Vk

x' S+(!,,,, x)1' ul'(x) dx.
Yk -I

Finally, by summing on i= I, ..., m+ 1, Yo= -1, Ym+l = 1, we have

II(P;'-PM)ull~~1f,'1' i f'k S+(fm,x)l' ul'(x)dx
k ~ p Vk-1

{

m+l }
X i~l (Ik-il + l)-12a-I-TlI' ,

whence by 2a - r - I> 1 the above sum { ... } is bounded for any k, so

The following lemmas estimate the functions S±(f"J.

LEMMA 3.3, Iff is locally absolutely continuous and x E [ -I, I J, then

f
X+'Lfm'X)/2)

S±(j;", x) ~ If~,(t)l dt,
x - ILfm (x)/2)

where Am(x) = (jl - x 2lm) + (11m 2
).

Proof We prove the lemma for S+(fm), say. If X¢[Yp-I,YaJ,
S+(fm,x)=O, so the statement is trivial. Now we assume XE[Yp_I,Yp ].

By tp _ t < Yp _ I < t p < Yp < tp + I ,
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S+(f""x)= l15 p l = IMp+1-Mpl

~ SUp{ If",(t) - f",(t')I, -1 ~ t, t' ~ tp + d

I'P+ 1 f1P+ 1

~ If;"(t)/ dl = If;,,(t)/ dl,
-1 Tp_1

333

since f~,(x) = 0 if x < XI or x> x",. Now, for every x E [Yk-I, Yk], k =

p, ... , a, it results that

Being n = J.lm with J.l > 2n:, we have

Therefore

I
x + 1,1",lx)/2)

S+(fm, x) ~ . If~,(t)1 dt,
., - 1,1.,lx)/2)

Similar argument works for XE[Ya-I,Yal If XE[Yk_l'Yk], k=p+
1, ..., a-I, then

S+ (fm , x) = Il5k1= IMk+1 - M k I

~ sup{ Ifm(t) - f",(t')i,

f
'k+1 IX+I,1.,IX)/2)

~ l.f",(t)i dt ~ If;"(t) 1dt,
Ik-I X-I,1",lx)/2)

and the lemma is proved. I

Now, as before letting umCx) = Vi'. O(x) n~ ~ 1 (Ix -!k 1+ m -I t" !pix) =

.)1 - x 2
, we prove the following.

LEMMA 3.4. Let U E GJ be defined by (2.4) and U E L p with 1 ~ p ~ oc. If
fEAC Loc and <pf'u",ELp([xl>xrn ]), then,for m~2,

-+ ~
II S - (frn) U II Lpl [)'p_ /.)'d]) ~;;; II <PI'Urn II Lpl [,\1. x",]),

where C(j is a constant independent of p, f, and m.
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Proof For the sake of simplicity we prove the theorem for S+(jm)
and with u(x)=v)',J(x)lx-rtl dl

• Now, by Lemma 3.3 and /;"(x) =0,
x¢ [x" x m ], for p< 00, we have

~ (" [f+(.1
m

(Xl/2) Il'm(OI dtl PuP(x) dx
.'1 x-(.1mlx)/2)

I [f
X+I.1",(X)/2) JP

= I/;"(t)/ dt uP(x) dx
Am x-IAmlxl/21

+ IT' +m-
I [r + (.1 ..(x}/2) //~,(t)1 dtJ P uP(x) dx

Ti -m- I x-(,1..lx)/2)

with Am = [x I, r I - m -I] U [r 1 +m -I, x m].
To estimate I" we observe that, x being an element of Am and Ix - tl ~

,1m(x) by [3, p. 80], u(x).- um(X) ~ ~um(t), ,1m(x) ~ ~,1m(t), and ,1 m(t) ~

'C(JI=f2/m). Therefore, if p < 00, by the Holder inequality

I I
x + (.1 ..(x)/2)

II ~ ,1:;'-'(x) 1/;"(tW dt uf,,(x) dx
Am X - (.J1/I(x)/2)

~ 'CPI f+(A",IX)/2) 1/~,(tW ,1~,-I(t) u:;'(t) dt dx
Am x-(A",(x)/2)

~ 'CP IX'" ,1;,,(t)I/~,(tW u~(t) dt,
XI

i.e.,
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Similarly, we have

"TI+m~1 tox+(/1m(x)/2)

~J . L1~,-I(x1J . 1f'(t)jPdtup(x1dx
T\ - m ~ 1 x - (A m(x)/2)

Using

it follows that

335

Recalling the estimation for II' the lemma follows if p < ex.. The case p = oc
is similar (cf. [3, p. 80]). I

Proof of Theorem 2.2. We recall that S-U;,,) ~ /,,, ~ S+Um1 and q,w ~

S - (/".) ~ q ,~1' P ,~f ~ S + Urn 1~ P,~, from which q ,w ~ fm ~ P 7:f' So

EMUm)".p ~ II(P,~f - q;,) u III'

~ /1[P,:,-S+Um)] u/l p+ II[S+Um1

-S-Uml] ull p + II[S-(/,,,)-q;,] ull p

~ I/(P:'- P,wl ull p + II(q,t-q;f) ul/ p

+ II [S+Urn) - S-Um)] u III"

Using Lemma 3.2 and Lemma 3.4,

MO/82 ....J-1
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Now, being that fE AC Lon if x E [Yk I' Yk], k = p, ... , a, we have

whence

II [S+ (fm) - S- (fm)] U II ~ ~ fI [fH 11mlx 1/,2 1 If~,( t)1 dll I' ul'(x) dx
l .\ --(d",(.\)/ ... )

I
" IX", Iva~ .... + ... + ....

J'p I X\ x",

j
oxm rIX + (c1",lx)/2) ] I'

~ Xl L x-\.1",(,)/2\ If:,,(t)1 dt UI'(X) dx.

Then, working as in Lemma 3.4, we have

whence we get

_ 2~a~ ~

EM (f",)u.1' ~~ II qJI'um II Lpl[X,. x",]) =;;; IlqJ f'u m II LI'(['''' xm])' I

Proof of Corollary 2.3. We start from

_ ce'
Em(j~,)u.1' ~ - Ilf'qJU", II Ipl[x,. X m ]).

m

Now let Q+(x)=J'-l7[+(I)dt and Q-Cx)=J'-I7[-(t)dl, where 7[±E

llm_1 and 7[-(x) ~ f~,(x) ~ 7[+(x), X E [XI, X1/l]. Therefore, we have
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where Bm = [XI,X m ] - U~=I [Tk - m--l,Tk + m- I
]. Here the last

inequality follows from a result in [6, Lemma 2.2, p. 105]. Since

it follows that

and, making the infimum be on n±, (2.9) follows. I

Proof of Theorem 2.4. We observe that, from (2.3) and Theorem 2.1,

l<p<CIJ.

Moreover,

We estimate the first term by Minkowski inequality

-x, rf" 11
/1':::;L

I
1f'(r)l l _I (t-x)~ uJ'(x)dx dt

:::;~. f"1 If'(l)ll L, (I + x)JI' dx11/1' dt

:::;'{)' r If'(t)!(l + nl
/!, u(t) dt.

-I

The estimation of II[f-f(x",)] U II Lpl[X"" I)) is similar and the theorem is
proved. I

Proof of Corollary 2.5. The assertion follows from Theorem 2.2 and the
inequalities
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f 1f'(t)I(1- (2
)1/" U(t) dt~Cf, f If'(t)I(1- t2

)l/" U",(t) dt
~, ~

= rr; f 1/,(t)1 rp( t) li",( t) rp(t) 1 -12/ql cit
Jill

( )
1~

~ Cf, II/'rpU", II!, t., rp(t)q - 2 cit

Proof of Corollary 2.6. We have

IIU-P) ull,,~ IIU-f,.,) ull,,+ IIU",- P) ull",

Making the infimum on P,

E",U),,,!, ~ IIU- j;,,) U II!, + E",U",)"."

~ IIU-f",) u II" + E",U",)".".

From the proofs of Theorem 2.4 and Corollary 2.5 it follows that

I ~ p < 00,

with (f, independent on nl, f, P.
Since II/'rpu", 11£ < 00, (2.7) still holds for p = oc, and Corol1ary 2.6

follows from Theorem 2.2. I
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