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The authors give new error estimates of Lagrange interpolation in the weighted
L, , norm, when u is a generalized Jacobi weight and the interpolation points are
the zeros of polynomials orthogonal with respect to (another) generalized Jacobi
weight. € 1995 Academic Press, Inc.

1. INTRODUCTION

Let X={x, ,, k=1,..m m=1,2,.}c(~1,1) be a matrix of knots
and let f be bounded function on [ —1, 1]. We denote by L, (X, /) the
Lagrange polynomial interpolating the function f at x,, ,, k=1, .., m. The
operator L, (X) maps bounded functions into continuous functions with an
L, weighted norm, 1 < p < oc. Therefore, if u is a suitable weight function,
then

IL,(X,f)ul,<const|flf,.

holds. Indeed, when the entries of X are the zeros of certain orthogonal
polynomials, then there are presented in the literature necessary and
sufficient conditions on u for the above to hold (see e.g. [10, 14]. There
also are some necessary conditions on » when X is a general matrix of
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322 MASTROIANNI AND VERTESI

points dense in [ —1,1] (see [8]). In particular, if f 1s a continuous
function, using the previous bound we get

Il[f_Lm(X’f)] 1’l||[r<const Emfl(f)a

where E,(f) denotes the error of the best uniformn approximation by
algebraic polynomials. Nevertheless, the last estimate often is not suitable
(if, say, fis not continuous). Further, as it turns out, in many applications
it is necessary to estimate the interpolation error in an L, weighted norm
by the same norm of the (local) derivative of the function /. In the present
paper, we obtain estimates of this kind, when p e (1, o), u is a generalized
Jacobi weight, and the points of interpolation are the zeros of the
generalized Jacobi polynomials. First, in the last inequality, we replace
E, \(f) by the error E,,_(f), , of the best one-sided approximation in
the L, space with weight u. Subsequently, we give estimates of E, (N »
when the function f'is locally absolutely continuous. This procedure can be
applied to several discrete type operators.

2. MaiN REsuLTS

We say that fe L,([a,b]), —1<a<b<]l, 1< p<oo,ifand only if

b
1 1 ggasn = 1017 dx < oo

If a= —1 and b=1, then we write feL, and ||f]|2={1, |f(x)|”dx. If
p = oo, we consider the vraisup norm. Further, we denote by AC_. the
class of the functions absolutely continuous in any closed set [a,b] <
{—1, 1). In the following I7,, denotes the set of the polynomials of degree
at most m. Throughout this paper, the symbol “%” stands for a positive
constant which may take different values on different occurrences. Let g be
a bounded and measurable function, and let ¢ be a weight function with
ge L, We set

E (8o ,=mf{[(Q* -0 )al,, Q%ell,,
0 (x)<gx)<Q%(x), xe[—1,1]} (2.1)

E",,,(g),,‘ » is called the error of the best one-sided approximation of the
function g in L, space with weight o.
Let

w(x)=y(x) o™A(x) ] lxe—x*  IxI<1, (22)

k=1
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where v*#(x)=(1 —x)* (1 +x)?, «, f> —1 is a Jacobi weight, y, > —1,
lxel<1l, k=1,.,5 O<yeLipd O0<i<l The weight w is called
generalized smooth Jacobi weight (we GSJ) (see eg. [1, 10]). Now, let
{ Pm{W))} men be the system of orthonormal polynomials corresponding to
the weight function w, that is, p,.(w) is a polynomial of degree exactly m
with positive leading coefficient and !171 Doulws )y pw; Yy w(tydt =6, ,. We
denote by x,=x,, (w), k=1,.,m, the zeros of p,(w) indexed in
increasing order and by L, (w, f) the Lagrange polynomial interpolating a
given function f: (—1,1)— R at x,, k=1, ..., m. (Incidentally, the function
f can be unbounded at +1.) Thus, setting

f(x)) if xe(—oo,x,],
fax)=< f(x) if xe[xy,x,,], m=1,
fix,,) if xe[x,, o),

we have L, (w,f,,)=L,(w,f) and
ILf= LW, DT ull, <N Sf=Fr)ull, + 1 [frn—Lalw, )T ul,.  (2.3)

In most cases u is a generalized Jacobi weight (u € GJ), ie.,
u(x)=v"%(x) I ltp— x| [x] <L (2.4)
k=1
In the foliowing we use notations ¢(x)=./1—x2 and u,(x)=

0" 2(x) Tk = Uz — x| +m ™)

THEOREM 2.1. Letpe(l, ), gq=p/(p—1)and m=2,3, ... If the weight
functions ue GJY, we GSJ satisfy the conditions

uelL,, —u—(p‘”zeL,,, and ﬂw“/zeLq, !eLq, (2.5)
w u u
then for every bounded and measurable function g:[ —1,1]— R
H[g_Lm(w"g)]uﬂps(gi‘m—-l(g)u,pa (26)

where € is a positive constant independent of m and g.

The next crucial step is to estimate E, ( So)u p (fm 1s the function defined
above).
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ThEOREM 22. Letpe[l,c],m=2,3,.,and ueGJ, we GSJ. If ueL,
and the function fe Ac, . satisfies

Sou, e L([x, x,]), (2.7)

where x, =x,, (w) and x,,=x,, ,(w), then

~ €
Em(fm)u,p<; ”(pf’um IlL,,([)q.xm])ﬂ (28)

where ¥ is a positive constant independent of m, p, and f.

Theorem 2.2 yields

COROLLARY 2.3. Using the assumptions and the notations of the
Theorem 2.2, we get

<K

Em(fm)u,p <ZEm—l(f£n)u<p,p’ mZZ, (29)

where € is a positive constant independent of m, p, and f.

The iterated application of (2.9) and (2.8) gives that if fV¢'u, e
L([x,x,]), then

- €
Em(fm)u.p <; ”f(r)(/’rum “ Lpllxt, xm 1P rz 1’ mz 2. (210)

When u(x)=1 and 1 < p < oo, estimates similar to (2.10) are in [15] and
[5]. Further, when p=1 and u=o0(l +log* ¢), o0eGJ, estimates of
E,(f). . can be found in [7]. Now we estimate the error of Lagrange
interpolation. Setting 7, =[—1,x,]Ju][x,,1], the following theorem
holds.

TueoreM 24. Let pe(l, o) and m=2,3, ... Assume that ue GJ and
we GSJ satisfy (2.5). If uelL,, then for every function fe ACy,. with
fo*fuel,

1S = Loow.f)] uups%[im‘l(fm)u,ﬁj FONL=2) () dz],

In

(2.11)

where € is a positive constant independent of m and f.

Remark 1. Using a similar argument, we can prove inequality (2.11) if
we replace u by u,,.
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The estimate (2.11) is useful when the function f is unbounded at +1.
For instance, let w(x)= (1 —x%)* and u(x)=(1—x?). In this case (2.5)
means

1 1 3 2 1 2
y> —— and max( —1+-,2 ——+—><<x<2 —=+-.
p ¢ P72 727

Then, by (2.10) and (2.11) we obtain

@(m72n72)'A2/p)

if fix)=(1-x)",0+y+1/p>0,
@(m—Z;'—Z/p)

if f(x)=log(l + xJ.

NES—Lon(w, )] ull,=

The previous estimates have the same order as the best approximation in
L, space with Jacobi weight (see [4, pp. 109, 110}).

Now we can state the following,

CoroLLARY 25. Let pe(l,o), m=23, ., assume that ueGlJ,
we GSJ satisfy (25). If ue L, fe ACy. and f'pu,€L,, then

€
LS = Lotw. DY ull, <— | ol
(2.12)

3
“[f_Lm(W’f)] U, Hpsz “f’(P“mH,,,

where € is a positive constant independent of m and f.

Inequality (2.11), together with (2.10) and (2.12), is sufficient to estimate
the weighted L, interpolation error for a wide class of functions. In fact,
from (2.12) it follows, whenever fgu, € L,, that

&€
”[f_Lm(W’f)] u“pg——Em72(f’)qmm,p’ (213)
m

where E,(g), ,=infp_; [(g—P)cl, and o is a weight function. (Indeed,
we apply (2.12) for the function F(x)=f(x) —fi, P, _,(1)dt, where
P, _.ell, ,.)

If u=0v"? (ie, a, =0, k=1, .., r), we can estimate E,,_,(f"),,, , by the
main part of the ¢@-modulus of continuity [3]. Unfortunately, (2.13)
does not work in the general case u# v™° because, at present, estimates
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of E,,_2(f)pu, , are not available. Instead we can proceed as follows.
Replacing in (2.12) fby f(x)—{*, L, (we? [, 1) dt, we have

€
”[f_ Lm(w’f)] ll”p S;’l- “[f’ —'Lm*l(W(pz’f')] Pl ”p! (2]4)

3
”[f— Lm(w’f)] U, “p<;1— “[f' _Lm—l(W(pzsf,)] U, “p’ (215)

with 1 < p< oo,

Moreover, if ue GJ and we GSJ satisfy (2.5), then so do u@* and we*,
Therefore, starting from (2.14) we can iterate (2.15) and finally apply the second
inequality in (2.12) or (2.11) together with (2.10). Hence, for instance, we get

n[f—Lm<w,f)]unpsgncp'f*”umnp, r>1, l<p<w. (216)

In particular, if p=2, we GSJ and u=ﬂ, the conditions (2.5) are
satisfied. So the previous estimates are refinements of the well-known
theorem of Erd3s and Turan [4] for GSJ weights.

Finally, we get

COROLLARY 2.6. Letpe[l, o], m=2,3, .., and assume that ue GJ and
uel, If fe ACy, and fou, €L, then

% '’
Em(f)u,p g; Nf PUu,, ”pv

where € is a positive constant independent of m, p, and f.

Remark 2. 1t is easy to prove that E,.(f),, ,<(€/m)|f pu,l, (see the
proofs in Section 3). Unfortunately, at this moment we cannot prove the
estimate E,(f), , <(%/m)ll fou|, with ue GJ, which holds when u=v"°
or when the exponents g, of the weight u are negative. The case when every
a, >0 is open. Similar remarks hold for the other estimates.

3. PROOFS

Proof of Theorem 2.1. From Theorem 9.25 by Nevai [ 11, p. 169], we get

Statement A. Let we GS), ueGJ, uel,, 1<p<w, and Pell,, ,.
Then

Z Xm,k(w) lum(xm. k(w)) P(xm,k(w))lp/wm(xm.k(w)) s fg“Pu”;,

k=1
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where
wo(x)=v"P(x) T] (xx—x|+m™"y%
k=1

un(¥) = 07%x) [] (lre—xl+m=H%  |xl <1,
k=1

m—1 ~1

A (W)= Z P?(W, xm,k(w)) ’

i=0
and € =%(w, u, p).
We also need a consequence of Theorem 3.2 by Xu [17, p. 82].

Statement B. By the notations and conditions of Theorem 2.1 and
Statement A, we have, for Pefl,,_,,

[Pul?<E 3. A W) [t X k(W) P(X kWD /W, (X 1 (W)
k

=1

In Statement B we applied the cast (replacing # in Xu’s theorem by V)
V=uw'/w, f'=u, and o’ = w.

Let g be a bounded and measurable function and Q* € 17,, | such that
0 (x)<gx)< Q7 (x), x| <1
With ue GJ, we have

Ilg—Lnw, ) ul,<I[Q" =@  Jull,+ILp{w,. /= Q) ull,.

Using Statement B and then Statement A,

up (X, (W)
wm(xm, k(wv))

ILAw, f= Q@ VU 2KE Y A i(W) [f= 0717 (%, (W)
k=1

m ul{x,, .(w))
\(g l , n -
< kgl m, k(w) wm(x”“ k( u)))

SENQT =0 )uly

(97 =07 17 (x, W)

Then
[g—L,(w,g)]ull,<EQ"—Q )ul,, (3.1

and Theorem 2.1 follows from (3.1), making the infimum with respect

to Q. 1
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In order to prove Theorem 2.2, we need some preliminary facts and
lemmas. If A and B are two expressions depending on some variables
then we write 4~ B if |A/B|*' <% uniformly for the variables under
consideration.

LEMMA 3.1, Let u(x)=b(x) v (x)T1i_, Iti—x|“€GJ and y, =y, «
= —cos(kn/(m+ 1)), k=0,...,m+ 1. If ueL,, then for every k with 1<
lkl<mand 1<v, vtk v+k+1<m,

P

R

w(x) dx <€ k|” jk u(x) dx
1

Yot k-1

where I'=max{(|2y+1|, |26+ 1|} +2rmax,_, _,lay| and € is an
absolute constant independent of m, k, and v.

Proof The proof requires examination of several particular cases, but
only simple calculations. For the sake of brevity we consider the weight
u(x) =v"%x)|x — 7,1 and the case

—lgyv—lgyv< <yv+k—l<yv+k< <yv+k+s<‘[1Syv+k+s+l<0'

Then
Vi 25 2_ 2\a
1v=r u(x)dx~~v_2<l> (Mi#) ,
e m m m
Vosk vk (vHE\? [(v+k+s)Y —(v+ k)N
el e () (e
and

1, < v )25*1< (v+k+5)2—? )“‘
I.. \v+k (v+k+s5)P—(v+k)?

_< v >Zfi+l k+s>‘”<2v+s+k>”'

T \v+k Ky v+s+2k)
Assume k > 0. (If k <0, we can consider 7, ,/I,.) Then, we obtain

v 26+1
( > S(gk|25+ll’
v+k

Moreover, if a, >0, we have

<2v+s+k "‘<1
2v+s+2k
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and

K+ s\
( +S> < Fk,

S

If a, <0, then ((k+s)/s)" <1 and ((2v+s+k)/(2v+s+2k))"=(1+k/
(2v+k+35)) <€k . Hence

! A
v S(gk120+ll+lu||,
Iv+k

as was stated. The other cases are similar. J

Let x,=x,, (w), k=1,...,m, with m>2. Putting n=um, 2n<peN,
we denote by 7, =1,,, = —cos({{2k — 1)/(n+ 1)}(n/2)), k=1,..,n+1,
the zeros of the Chebyshev polynomial 7,,,. Since weGSJ, 1+
X (W) ~m ™7~ 1—x, ,.(w); hence there exists a fixed g e N such that, for
4> max{2m, i) we have

—l<t) <<t KX << <X, S < s <y <

for some p>1 and o <n.
Now we define the function S*(x)=S7*(f,,, x) as

S* ([ X)=M, + Y (x—=1)°% &4,
k=p

where generally

0, x<1t,
1, x>t

Furthermore,
M, =sup{f, (1), —1<1<1,},
M, =sup{f, (1), t, \<t<1}, p+1<k<o,
M, =sup{f.(0),1,<t<1},
=M, ,—M,, k=p,..,0.

Analogously, we can define S {x)=S8"(/,,, x) as

ST ¥y =m, + 3 (x =15 O

c=p
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where
m,=inf{ f,(1), —1 <t1<1,},
my=inf{ f, (1), 1, _, <t <1}, p+i<k<o,
m, o =inf{ f,(1), 1, <1< 1},
Sp=m, ., —ny, k=p,..,0.
By definition,
ST (fors X) S [ X) ST (S, X).

Now we put M =2an, with aeN, 2a>I"+2, and I’ as defined in Lemma
3.1, and we define the polynomials P;,‘k, P, elly, p<k<oao, as follows:

+ =¢7 ’ o '
PM,k(ti)_{O, i=1,2, .., k-1,
d’ . ; 1
E);?PM,/\»(I,.)zo, i#k, j=12,.,2a—1,
1, i=k+1,.,n+1,
- ()=
Pju,k( :) {O, i=l,27 very k,

J
E;;’P;Lk(ti)=0’ i#k, j=1,2,...,2a~1.

Working as in [15], we can prove that

P (X) < (x=1)% S Py (%)
and
PATI‘k(x)~P;I,k(x)=llza(X)a
where /, is the kth fundamental Lagrange polynomial based on the

Chebyshev zeros ¢, .., 1, ,,. Moreover, by the previous polynomials, we
define

Pix)= Y Pi(x)0i+ T Po(x)0c+ M,

4> 0 <0

Pu(x)y=Y Pux)é+ Y, Py (x)d,+M,,

S >0 S <0
i)=Y Pi ()0 + ¥ Py (x)8+m,,
bk 0 oy <0

gulx)= 3 P;I,k(x)a—k-l' > P;I,k(x)gk"‘mw

>0 O <0
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for k=p, .., o, and from the definitions of S*(f,,, x) it follows that

G X)SS (£, X)<qx), P x)<S* (£, x)<Py(x), (32)

qi(x) = qp(x)= Y 1F(x)|5], (33)
k=p

P(x)—Py(x)= Y 13(x)]. (3.4)
k=p

We still need a definition. Letting y, =y, = —cos(kn/(n+1)), k=
1, 2, ..., n, be the zeros of the nth Chebyshev polynomial of the second kind,

U,, it is well-known that 1, < y, <t,,,, k=1, .., n. Let us define S*(f,,)
by

S*(, Y):{w""’ Vi 1$xKy, k=p, .., 0,

0, X<y, , or y,<Xx,
g,(f X)_ [5/(]’ _Vk~1<—\'$yk, k=p3 ey O,
" 0, X<y, Or y,<x.

Now we prove the following.

LEMMA 3.2, Let ue GJ be defined by (2.4) and ue L, with 1 <p<cc. If
[on is bounded and measurable, then

“(P‘; _P}\_/{) u”p< % ’,‘S—'+(fn1) u”L,,([y‘,Ay.y,,])’ (35)
1(ge =g ull , <E NS (fo) Ul Ly syl (3.6)
where € is a positive constant independent of p, [ and m > 5.

Proof. For the sake of brevity, we prove (3.5). Formula (3.6) can be
proved similarly. We observe that if xe[ y,_;,¥,;], i=p. .., 0, then

€

2ayg ..
S n

Hence, from (3.4) and the Holder inequality

_ o |Sklulx)
L o Y| 2 7 4 —_————
IPidx) = Pyl MxKW(EMIk—iHI)z”)
z 10,17 1”(x)

<% Y

k=p

Hk_i' + l)tlu—lip'
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On the other hand, recalling Lemma 3.1 and the definition of S*(f,,), we
have

j 16,17 uP(x) dx < E(k —i] +1)*" fk 16,17 w(x) dx

Yi—1 Yik—1

=Gk =i+ 1" [ §0 (0 wx) d

Yk —
Then it follows that

[ [P0 =P} w(x)dy< €7 % (k=i +1)" =117
yi—1 k

=p

xf SH(f., x)? u?(x) dx.

Yk -1

Finally, by summing on i=1,..,m+1, yo= -1, y,,,,=1, we have
a Vi _
IPy— Pl <@ Y [ S*(f,, %) wix)dx
k=p V-1

n+ 1
AT kil e,

i=1
whence by 2a— I'—1>1 the above sum { ---} is bounded for any &, so
”(P;[_ P}ITI) u ”p <%ﬁ“‘—g_-‘—(.f‘m) u ”L,.{[_V,,f].)',,])' I

The following lemmas estimate the functions S*(f,,).

LemMA 3.3. If [ is locally absolutely continuous and xe[ —1, 1], then

S, X 4 (A x)/2)
S*(fon )< £ )],

X~ (Am(x)/2)

where 4,(x)= (/1 —x¥m) + (1/m?).

Proof. We prove the lemma for S*(f,), say. If x¢ [y, 1, V01
S*(fm> x) =0, so the statement is trivial. Now we assume xe[y, ,,y,].
By t, <y, 1<t,<y,<t,.i
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S* (fmrx)=18,1=1M, 1 —M,|

SSup{l.fm(t) _fm(tl)|) -1 St’ t’ < tp+|}

<[ irota=["" 1

Tp—

since [, (x})=0 if x<x, or x>x,,. Now, for every xe[yi_, vy}, k=
p, .., g, it results that

n s 1 /7\?
tk+l_lkgl<—_\/1‘:\_x—'+- — 1.
n 2\n
Being n = pum with y > 2n, we have

2
=x L4

borTh ST Rl T T

Therefore

_ X+ (A x)/2)
S ()< [fuOld, xely,-0,]

X = (A(x)/2)

Similar argument works for xe[y,_1,y, ] f xe[pypi_ 13 ] k=p+
1,..,06—1, then

S_+(fm3x)= 15k1=le+1_Mk|
Ssup{| £t} — e, teelt it 11}

Ty X + (Al x)/2) ,
<[ ifotar<| 0] b,
-1 X~ (Admlx)/2)
and the lemma is proved. [

Now, as before letting u,,(x)=0v"°(x) [14_, (Ix— ;| +m ™!

/1 —x%, we prove the following.

)%, olx) =

LemMma 3.4, Let ue Gl be defined by (2.4) and uel,withl<p<o. If
feAC, . and ¢f'u,, e L{[x,,x,]), then, for m=2,

~ ‘4
”St(fm) u”L,,([yﬁ, 1< yel) S;‘; ”¢f"um HL,,‘[.\'I.X",))’

where € is a constant independent of p, f, and m.
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Proof. For the sake of simplicity we prove the theorem for S*(/f))

and with u(x)=0v"%x)|x—17,|*. Now, by Lemma 3.3 and f,(x)=0,
x¢[x;,x,], for p<oo, we have

1 Xm Yo
Yp—1 xy Xm
1

|
J-x,,, [f‘ + {Amix)/2) (0] dt] 4 uP(x) dx

X X — (Am(x)/2)

”S+(.f;n) u ”ﬁp([,l',,—l‘_vn]) =

Y\

X+ (Al x)/2) V2
[ { ) dz} w(x) dx

X —{Am(x)/2)

n+m! X+ (dalx )2} 14
el e de |

—m- x — (Am(x)/2)
=1 +1,,

L X 1.

To estimate I, we observe that, x being an element of 4,, and |x —1| <
4,{x) by [3, p. 80], u(x)~u,(x)<Cu,lt), 4,(x)<€4,(t), and 4,,(1) <
%(/1— t*/m). Therefore, if p < cc, by the Hélder inequality

with 4, =[x, 1,—m 'Ju[t;+m~

X+ (Al x)/2)
| |Fl D17 dt i) dix

n<f an)

Am X = {(Am(x)/2)

X+ {Au(x)/2)
S(g"f J Lfo )12 427 (1) ub( 1) dt dx

Am Y x — (A(x)/2)

<@ [ an - OIS0 ) [ [ dx] di
Ix — 1} < Amlx)

X1

<@ [ an o\ un o) dt,

%F
1; <;1'1,' “gpf,um “II,‘p([le«‘(m]Y
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Similarly, we have
-1

T+ m
]zzf
1

T —m-

X+ (Am{x)i2) P
“ lf'(t)ldt] wh(x) dx
x —{A,(x)/2)

Ax A LA X)2)
Ag,f‘(x)" /(D)7 dt uP(x) dx

X — (Am(x)/2)

71 +m-! J~.\' + (Am(x)/2)

AT=Y )| N oy dt | x — 1, |97 dx

"

<

U\m" X — {Apl X ¥2)

o+ em! ) ptr4m!
<ar [T apairor e |17 e eras | a

T —m r|\m’|

Using

r|+m‘]
J X—1 |Pdx <EA, (|t —1,| +m~ )7,

71 !

it follows that

e

6'[’
12 <;1; ”(pf,um “ i,,([.\’].,\‘,,,])'

Recalling the estimation for /,, the lemma follows if p < oc. The case p= oo
is similar (cf. [3, p. 80]). |}

Proof of Theorem 2.2. We recall that S (f,)< [, <S"(f,,) and q,, <
ST <qups Poy<ST([,) <Py, from which q,, < £, <Py;. So

Eulfide,<WPH—gi)ul,
<SPy —-S) ] ull , LS (S
=S (L Tul, +I0S () — gy ul,
SUPL—=P)ull,+ g —aqx)ull,

IS Sfod =S (ST ull

Using Lemma 3.2 and Lemma 3.4,
~ 4 , N -
Eﬁl(fm)u.ps—"_;“Wf“m“I.,,([\q..\’,,,]]+”[S (fm)_S (fm)] u“p'

640/82/3-2
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Now, being that fe AC fxelye 1,vl, k=p, .., 0, we have

Loc»
x 4 {Ap(x)72)

S w0 =S i< Ifnnldr< | ) d,

-1 X — {Amlx)/2)
whence

~x + (Ap{x)/2)
X (Al %)/2)

Ret Xm Ya
Y Y

Yoo X1 X

~ Xy X+ (Al x)2) r
J U [ dt] u”(x) dx.

X3y X = (A X2

(CRVARERTA T [J L7t dt]” W(x) d

N

Then, working as in Lemma 3.4, we have

H [S+(fm) - S—*(]‘m)] u II[} S;TMI ”qpf’um ” Lp(Lx1, xpn 1)

whence we get

~ 2ua¥® , € ,
EM(ffm)u‘p S 7 ”(pf U, Il Lp([x1.xp ]} = ; ”(Pf U, ” Lyt[xt.xm])e l

Proof of Corollary 2.3. We start from

. €
Em(fm)u,ps;’_; “f pu,, ”L,;l[n,v\'m])'

Now let Q% (x)=f",z*(t)dr and Q (x)=§*,n (t)dr, where nte
1, ,and n (x)< [, (x)< 7t (x), xe[x, x,, ]- Therefore, we have

Em(fm)u,p = Em(fm— Q_)u,p

”(f’ ‘—7{*) (pum H Lp([x1, xm])
A" —=77) Qo | L pr. 5D

f(r* —n") (ﬂum”L,,(B,,.)a
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where B, = [x,x,,] — Ut_y[tx — m ™', 7. + m']. Here the last
inequality follows from a result in [6, Lemma 2.2, p. 105]. Since

Hn* —n ) ou, o, <ENRT =1 ) @ulipim,s
it follows that

o %
Em(fm)u‘p S”; H(T[+ —n ) (P“ “ Loty xn 1)

and, making the infimum be on 7+, (2.9) follows. |
Proof of Theorem 2.4. We observe that, from (2.3) and Theorem 2.1,
ILf— L w, N ul,<CE, (f)u,+ 1L ull,. l<p<a.
Moreover,

H(f“fm) u “p < H[f_f(YI )] u H Il =151 + H[.f—'.f(xm)] u HL,,([X,,,, 1hH-

We estimate the first term by Minkowski inequality

X 1/p
U=Vt = [ 170 =1 ) |

1

P

u’(x) dx} ’

J” (1—x)° f(t) dt
1

Xy
—1

-1 1p
<J L (0)] [J (1—x)% ul(x) d.\‘} dr
-1

<o | ron| ]

tp
(14 xyr dx} dt
1

<% j’“ L+ 0" u(r) dr.
1

The estimation of |[f—f(x,)} ull,,x,. 17 is similar and the theorem is
proved. |

Proof of Corollary 2.5. The assertion {ollows from Theorem 2.2 and the
inequalities
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J OI — 7wty de<® [ 1010 = )7 u, (1) dt
1,

m I

=% [ 1] ot (1) (1) =29 di

m

Yy
<EN pu,ll, <L @(1)? 2 dt)

€ ’
< - ”f pu,, H P l
m

Proof of Corollary 2.6. We have

W~ PYull, < (/=1 ull,+ W fo — PYull,,
n=2, Pel,, pell, «x]

Making the infimum on P,

Em(f)u, P < ”(f—fm) u H r + Enr(f;n)u.p
< “(f_—fm ) u H P + Enl(ﬁll)ll, P

From the proofs of Theorem 2.4 and Corollary 2.5 it follows that

.
A P T O e

with & independent on m, f, P.

Since || f'ou,, | < oo, (2.7) still holds for p=woc, and Corollary 2.6

follows from Theorem 2.2. |

ACKNOWLEDGMENT

The authors thank the referees for their suggestions, especially regarding the proof of

Theorem 2.1.

REFERENCES

1. V. M. Babkov, Convergence in the mean and almost everywhere of Fourier series in

polynomials orthogonal on an interval, Mat. Sb. 95, No. 137 (1974), 223-256.

2. G. CriscuoLo AND G. MASTROIANNI, Weighted L, error of derivatives of Lagrange

interpolation, MSS, in preparation.

3. Z. Ditzian anp V. Totik, “Moduli of Smoothness,” Series in Computational Math.,

Springer-Verlag, New York, 1987.



Lo

LAGRANGE INTERPOLATION WEIGHTED ERROR 339

. P. ErRDGs AND P. TURAN, On Interpolation, 1, Ann. Marh. 38 (1937), 142-151.

. V. H. Hristov aNp K. G. Ivanov, Operators for one sided approximation by algebraic
polynomials in L([ —1,1]%). Math. Balk. 4 (1988), 375-389.

. D. S. LuBinsky AND P. Neval, Markov-Bernstein inequalities revisited, Approx. Theory
Appl. 3/4 (1987), 98-118.

. G. MasTROIANNI, Christoffel functions and error of positive quadrature rule, Ann. Numer.
Math., to appear.

. G. MASTROIANNI AND P. VERTESI, Mean convergence of Lagrange interpolation on
arbitrary system of nodes, Acta Sci. Math. (Szeged) 57 (1993), 429-441.

. A. MATE, P. Neval, anp V. ToTik, Necessary conditions for weighted mean convergence
of Fourier series in orthogonal polynomials, J. Approx. Theory 46 (1986), 314-322.

. P. NEvAl, Mean convergence of Lagrange interpolation, 111, Trans. Amer. Math. Soc. 282
(1984), 669-698.

. P. NEeval, “Orthogonal Polynomials,” Memoirs Amer. Math. Soc., Vol. 213, Amer. Math.
Soc., Providence, R1, 1979.

. J. PresTiN, Mean convergence of derivatives of extended Lagrange interpolation,
submitted for publication.

. J. PresTIN anND Y. Xu, Convergence rate for trigonometric interpolation of non-smooth
functions, J. Approx. Theory, to appear.

14. Y. G. SHi, Necessary conditions of mean convergence of Lagrange interpolation,
J. Approx. Theory, to appear.

. M. P. StosaNova, The best onesided algebraic approximation in L,([ —1. 1]} 1< p< o,
Math. Balkanica 2, Nos. 2--3 (1988), 101-113.

. Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials, I,
J. Approx. Theory 72 (1993), 237-251.

. Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials, II,
J. Approx. Theory 76 (1994), 77-92.



